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Abstract
A Markov chain on non-negative integers which arises in a roulette-type game
is discussed. The transition probabilities are p01 = ρ, pNj = δNj , pi,i+W = q,

pi,i−1 = p = 1 − q, 1 � W < N, 0 � ρ � 1, N − W < j � N and
i = 1, 2, . . . , N − W. Using formulae for the determinant of a partitioned
matrix, a closed form expression for the solution of the Markov chain roulette-
type game is deduced. The present analysis is supported by two mathematical
models from tumor growth and war with bargaining.

PACS numbers: 05.40.Fb, 02.50.Cw, 02.50.Ga, 02.50.Le

1. Introduction

The classical two-player gambler’s ruin problem, in which one unit changes hands until one
player goes bankrupt, is well known (cf Feller (1968), chapter 14.8, Srinivasan and Mehata
(1978) chapter 3, Percus (1985), El-Shehawey (2008) and Lefebvre (2008) and references
therein), has a very simple, closed form solution, given in the cited literature and also referred
to in corollary 2.1 of the present paper in the case ρ = 0. There are numerous applications
of this type of problem, and it attracted some attention in the 1970s in the context of cancer
growth modeling (cf Bell (1976) and Beyer and Waterman (1977)). In particular, there was
significant interest in estimating the expected time for a cancerous clone of cells to reach the
tumor size from a single wayward cell, rather than dying off before reaching the tumor size.
The analysis can help to determine the appearance of the first wayward cancerous cell, and
perhaps to identify reasons for the cancerous growth (cf El-Shehawey (1994) and references
therein). Here, we generalize the classical problem by introducing the following assumptions.

(1) The number of units the gambler may win in each single game is W, 1 � W < N .
(2) The initial capital of the gambler is i units, 0 � i � N − W .
(3) The ultimate fortune which the gambler wants to accumulate is N units.
(4) In each single game the gambler has a probability q of winning W units from his adversary,

and probability p = 1 − q of losing one unit to his adversary.
(5) If the gambler’s fortune drops down to 0 units he is allowed with probability ρ, 0 � ρ � 1,

to start the game again with one unit.
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(6) After a series of single games, the game ends
(i) with probability 1 − ρ when the gambler goes broke (loses all his fortune), or

(ii) when he reaches his objective (wins all his adversary’s fortune).

In the language of Markov chain random walk—that is, {Xn, n = 0, 1, . . .} whose state
space is {0, 1, . . . , N} with transition probabilities

pi,i+W = q = 1 − pi,i−1 = 1 − p for i ∈ {1, 2, . . . , N − W }.
When the particle hits the origin absorption (ruin) partially occurs with probability 1 − ρ

or reflects to the state one with probability ρ, 0 � ρ � 1. At the boundary state
j,N − W < j � N there is an absorbing barrier.

We look for the probability that the gambler loses all his fortune, that is the probability of
ruin partially

P(i) := Pr{τ0 < τN−W | X0 = i} for i ∈ {0, 1, 2, . . . , N − W },
where

τ0 := inf{n � 0 : Xn = 0} and τN−W := inf{n � 0 : Xn = N − W }.
Physically, this corresponds to a situation where upon reaching the boundary 0, the particle

is either lost from the system with probability 1 − ρ or turned back to the state 1 of the system
with probability ρ, and reduces to the classical problems of random walk, associated with the
game of roulette, in the presence of the following.

(1) A perfectly absorbing barrier at j,N − W < j � N with partially absorbing, perfectly
absorbing, or perfectly reflecting barriers at 0 for 0 < ρ < 1, ρ = 0, and ρ = 1,
respectively.

(2) A single (partially or perfectly) absorbing barrier at the origin, by taking the limit when
N → ∞. It corresponds to a contest in which a gambler plays a game against an infinitely
rich adversary.

In the present paper, using formulae for the determinant of a partitioned matrix, we seek
a closed form solution to this generalized roulette-type game, i.e., we compute the probability
of ruin partially. This problem is solved in several special cases (cf Feller (1968), p 352, Hill
and Gulati (1981), Percus (1985) and El-Shehawey (2000)).

Using generating functions and Lagrange’s theorem for the expansion of a function as
a power series, El-Shehawey (2002) deduced an explicit expression for the probability of
the player’s capital at the nth step with the assumption that the adversary is infinitely rich
(N → ∞) (see also Hill and Gulati (1981)).

Kozek (2002) has derived similar formulae for the complementary probability of ruin,
q(i) := Pr {τN−W < τ0 | X0 = i}, in the particular case when ρ = 0.

2. Closed form solution for the Markov chain roulette-type game

Let P(i) be the probability of ruin partially for a gambler starting with i units, 0 � i � N −W ,
with the probability p of losing a unit and q = 1 − p of winning W units and playing against
an adversary with initial capital of N − i units. The probability P(i) satisfies the following
difference equation

P(i) = pP (i − 1) + qP (i + W) for 1 � i � N − W (2.1)

with the boundary conditions

P(i) =
{
ρP (1) + (1 − ρ) for i = 0
0 for N − W < i � N.

(2.2)
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Equations (2.1) and (2.2) can be expressed as the following system of N − W equations:

P(1) − qP (W + 1) = p(ρP (1) + (1 − ρ)), at i = 1
−pP (1) + P(2) − qP (W + 2) = 0, at i = 2
−pP (2) + P(3) − qP (W + 3) = 0, at i = 3

...
...

−pP (N − 1 − 2W) + P(N − 2W) − qP (N − W) = 0, at i = N − 2W

−pP (N − 2W) + P(N − 2W + 1) = 0, at i = N − 2W + 1
−pP (N − 2W + 1) + P(N − 2W + 2) = 0, at i = N − 2W + 2

...
...

−pP (N − W − 1) + P(N − W) = 0, at i = N − W.

(2.3)

This system can be written in a matrix form as

PN−WYN−W = RN−W, (2.4)

where PN−W is a band matrix of order N − W , defined by

PN−W =

1
2
.
.
.

N − 2W

.

.

.

N − W

1 2 · · · · · · W + 1 · · · N − W⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −q 0 · · · 0

−p 1 0
. . . −q

. . .
...

0 −p
. . .

. . .
. . . 0

...
. . .

. . .
. . . −q

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

...

...
. . . −p 1 0

0 · · · · · · · · · · · · 0 −p 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.5)

with the elements of the matrix PN−W = (PN−W(i, j)) being

PN−W(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, i = j, j = 1, . . . , N − W

−p, i = j + 1, j = 1, . . . , N − W − 1
−q, i = j − W, j = W + 1, . . . , N − W

0, otherwise,

YN−W being a column vector of probabilities P(i), i = 1, 2, . . . , N − W , and RN−W being
a column vector with the first element equal to p(ρP (1) + (1 − ρ)) and the last N − W − 1
elements equal to zero.

Denote

�N−W = |PN−W |. (2.6)

Lemma 2.1. Let A be an invertible matrix of order n, partitioned as

A =
[

A11 A12

A21 A22

]
,

in which A22 is non-singular. Then the determinant

det A = det A22. det
(
A11 − A12A

−1
22 A21

)
. (2.7)
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A matrix with the form of A11 − A12A
−1
22 A21 is called a Schur complement of A22 in A. An

excellent review of Schur complements and their applications is given by Horn and Johnson
(1994), section 07.3, p 18, (see also El-Shehawey et al (2008)).

Lemma 2.2. The determinant �N−W of the matrix PN−W obeys the following recursive
relation

�N−W = �N−W−1 − qpW�N−2W−1, (2.8)

with initial conditions

�1 = �2 = · · · = �W = 1. (2.9)

Proof. See the appendix.

Lemma 2.3. The determinant �N−W = |PN−W | can be expressed in the following explicit
form

�N−W =
�(N−W−1)/(W+1)�∑

i=0

(−1)i
(

N − (i + 1)W − 1
j

)
(qpW)i, (2.10)

where �u� denotes the greatest integer not exceeding u.

Proof. See the appendix.

Lemmas 2.2 and 2.3, with appropriate change of notation, agree with that of Kozek (2002).

2.1. Main result

The main purpose of this contribution is to find a closed form solution for the Markov chain
roulette-type game, i.e., solving the system of equations (2.4). It is formulated in the next
theorem:

Theorem 2.1. The probability P(i) takes the form

P(i) =

⎧⎪⎪⎨
⎪⎪⎩

ρP (1) + (1 − ρ) for i = 0

pi(ρP (1) + (1 − ρ))
�N−W−i

�N−W

for 1 < i � N − W

0 for N − W < i � N,

(2.11)

where

P(1) = p(1 − ρ)�N−W−1

�N−W − ρp�N−W−1
, (2.12)

and �N−W is given by (2.10).

Proof. (by induction)
Let P

(i)
N−W denote the matrix obtained from the matrix PN−W , given by (2.5), by replacing

its ith column with the column vector RN−W defined in (2.4). We denote by �
(i)
N−W the

determinant of the matrix P
(i)
N−W .

Basis steps. When i = 1, partition the matrix P
(1)
N−W by the first row and the first column in

the form

4
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P
(1)
N−W =

1
2
.
.
.

N − 2W

.

.

.

N − W

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p(ρP (1) + (1 − ρ)) | 0 · · · 0 −q 0 · · · 0
− − − − − − − − −− −− −− −− −− −− −− −− −−

0 | 1 0 −q
...

| −p
. . .

. . . 0

| . . . −q

... | . . .
. . .

. . . 0

| . . .
...

| −p 1 0
0 | · · · · · · 0 −p 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.13)

Applying lemma 2.1, we obtain

�
(1)
N−W = p(ρP (1) + (1 − ρ))�N−W−1. (2.14)

Dividing both sides by �N−W , we have

�
(1)
N−W

�N−W

= p(ρP (1) + (1 − ρ))
�N−W−1

�N−W

. (2.15)

Using Cramer’s rule, we obtain

P(1) = �
(1)
N−W

�N−W

. (2.16)

Hence the theorem is true for i = 1.
Substituting (2.16) into (2.15), we obtain(

1 − ρp
�N−W−1

�N−W

)
P(1) = p(1 − ρ)

�N−W−1

�N−W

. (2.17)

Thus formula (2.12) follows.
Now let i = 2. Partition the matrix P

(2)
N−W by the first two rows and the first two columns

in the form

P
(2)
N−W =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 p (ρP (1) + (1 − ρ)) | · · · 0 −q 0 · · · 0

−p 0 | 0 −q
. . .

...

−− − − − − − − − − −− −− −− −− −− −− −− −−
0

... | 1
. . . 0

| −p −q

... | 0 0

... | ...
. . .

. . .
. . .

...

| . . . 0
0 | 0 · · · 0 −p 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.18)
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Applying lemma 2.1, we obtain

�
(2)
N−W = p2(ρP (1) + (1 − ρ))�N−W−2. (2.19)

Dividing both sides of (2.19) by �N−W , we obtain

�
(2)
N−W

�N−W

= p2(ρP (1) + (1 − ρ))
�N−W−2

�N−W

. (2.20)

Using Cramer’s rule again, we have

P(2) = �
(2)
N−W

�N−W

. (2.21)

Then the theorem is true for i = 2 as well.

Induction step. Suppose that the formula (2.11) is true, in the case 1 < i � N − W , for
i = j − 1 and i = j , and we try to prove that it holds at j + W , i.e. let

P(j − 1) = pj−1(ρP (1) + (1 − ρ))
�N−W−j+1

�N−W

, (2.22)

P(j) = pj (ρP (1) + (1 − ρ))
�N−W−j

�N−W

. (2.23)

From (2.22), (2.23) and the difference equation (2.1) with i = j , it is easy to verify that

qP (j + W) = pj (ρP (1) + (1 − ρ))

�N−W

{�N−W−j − �N−W−j+1}. (2.24)

Using lemma 2.2, formula (2.24) finally becomes

P(j + W) = pj+W(ρP (1) + (1 − ρ))
�N−2W−1

�N−W

. (2.25)

Hence the theorem holds for i = j + W . This completes the proof. �

The following two corollaries are simple consequences of theorem 2.1. In corollary 2.1.
The game terminates when the player loses all his fortune or when his capital reaches, or
exceeds, level N − W .

Corollary 2.1. Let P(i) be the probability of ruin (ρ = 0) for a gambler with an initial capital
of i units, i = 0, 1, . . . , N , with the probability p of losing a unit and q = 1 − p of winning
W units, and playing against an adversary with initial capital N − i units. Then we have

P(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for i = 0

pi
�N−W−i

�N−W

for 1 < i � N − W

0 for N − W < i � N

(2.26)

and �N−W given by (2.10).
The complementary probability of ruin is

q(i) = 1 − P(i) for i = 0, 1, . . . , N, (2.27)

where P(i) is given by (2.26).
Formula (2.27), with the appropriate change of notation, agrees with that of Kozek (2002).
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Corollary 2.2. Let P(i) be the probability of ruin partially (W = 1) for the classical gambler’s
ruin in which the gambler loses or wins one unit with the probabilities p and q = 1 − p,

respectively. If the gambler’s initial capital is i units, i = 0, 1, . . . , N − 1, and he plays
against an adversary with initial capital N − i units, then we obtain

P(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ρ)
[(

p

q

)i − (
p

q

)N ]
1 − ρ

p

q
− (1 − ρ)

(
p

q

)N
for p �= q

N − i

N + ρ

1−ρ

for p = q.

(2.28)

Proof. Using lemma 2.3, with W = 1, it is easy to verify that

�N−1 = qN−1
N−1∑
s=0

(
p

q

)s

=
qN−1

(
1 − (

p

q

)N)
1 − p

q

, (2.29)

�N−i−1 =
qN−i−1

(
1 − (

p

q

)N−i)
1 − p

q

and �N−2 = qN−2

⎛
⎝1 − (

p

q

)N−1

1 − p

q

⎞
⎠ . (2.30)

Substituting (2.29) and (2.30) into theorem 2.1, with W = 1, after simplification, formula
(2.28) follows in the case p �= q. The case p = q immediately follows from the case p �= q

after taking the limit as p

q
→ 1. �

It is straightforward to show that the present results are generalized versions of some
well-known results. For example, formula (2.28), with appropriate change of notation, agrees
with that of El-Shehawey (2000) (see also Percus (1985)), agrees in the case ρ = 0, N → ∞
with that of El-Shehawey (2002), and agrees in the case ρ = 0 with that of Lefebvre (2008)
(see also Feller (1968) p 345, and El-Shehawey (1994)).

Applications

The gambler’s ruin problem has found applications in biology (especially, tumor growth and
genetics), in physics (especially, solar physics, solid state physics and quantum mechanics),
in war with bargaining and others (cf Watterson (1961), Beyer and Waterman (1979), Fokker
(1984), Bohm (1994), Duan and Howard (1996), Konno (2002), and Smith and Stam (2004)).
For example we consider two mathematical models, the first one to which our result in formula
(2.28) has been applied concerns the growth of a cancer tumor. A tumor is a non-inflamed
abnormal mass of tissue. A cancer tumor is thought of, in a simple model, as arising from one
wayward cell that has lost the ability to control itself. The wayward cell starts reproducing
without regard to the presence of other cells. The cell progeny may all die before catastrophe
overtakes the host organism, or may produce a family tree of descendants (called a clone)
large enough to be noticeable to the host organism, in which case the descendants become a
tumor. It is the tumor that is noticeable, not the early cells that died without progeny. It is of
interest to estimate the time it takes for one wayward cell to reach the tumor size.

A set of models has been developed (see for example Bell (1976) and El-Shehawey
(1994)). Consider a process in which each cell has probability p(0 < p < 1) of dividing to
produce two identical new cells, and probability q = 1−p of dying or of becoming irreversibly
changed to a non-dividing state. For normal cells in a tissue that is not undergoing net growth,
p = 1

2 . Of interest is the event of a cell becoming, by this mechanism, a macroscopic clone

7
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of N cells. To complete this model, division and death times must be specified. The question
of interest is the time it takes for one wayward cell to reach a clone of N cells. The natural
model for this problem is a birth and death process with linear growth. The complementary
probability of ruin, that a single cell ever becomes a clone of N proliferating cells is then
found as the solution of a gambler’s ruin problem, q(i) = 1 − P(i) where P(i) is given
by (2.28).

A second model arises from a war with bargaining. The present roulette-type game
to which the general formula (2.11) has been applied concerns a war with bargaining, the
simplest case W = 1 and ρ = 0 was suggested by Smith and Stam (2004). For the sake of
illustration, assume the existence of two nations of different military powers, A1 and A2, that
are in dispute over the division of some prize. Assume that nation A1 is stronger. Suppose
there are N forts and that initially nation A1 possesses X0 of them. Each time the nations fight,
either A1 captures W forts from A2, or A2 captures a fort from A1. These events occur with
probability q and p = 1 − q, respectively. If A1 wins the first battle, then the distribution of
forts becomes X1 = X0 + W ; similarly, if A1 loses the first battle, then X1 = X0 − 1. We refer
to the distribution of forts as the ‘state’ variable. The war terminates when either the total
capture of the nation A1 for the first time reaches or exceeds N − W forts, or its fortune drops
down to 0 forts with probability 1 − ρ. The war can break out again, with probability ρ, if the
loser can get some aid (a fort) from another nation. The probability that nation A1 will lose
partially the war given the starting state i is given by theorem 2.1. The (N − W) × (N − W)

transition probability matrix PN−W , given in (2.5), describes movements between states. For
example, the element ij is the probability of moving from state i to state j .

3. Conclusion

In this paper, we have considered the so-called Markov chain roulette-type game that
generalizes the classical gambler’s ruin problem, in which at 0 the particle is either
absorbed with probability 1 − ρ or reflected to the position one with probability ρ. And
at j,N − W < j � N there is an absorbing barrier. At each step the particle either moves a
fixed multiple displacement to the right or a unit displacement to the left. The present results
provide a simple and convenient approach to finding an exact and explicit expression for the
probability of ruin partially. The expression we reported has been derived by means of an
elementary partitioned matrix. The present formula enables us to find interesting particular
cases through an appropriate choice of the reflection probability ρ and the number of units W .
We have discussed two applications in tumor growth and war with bargaining.
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Appendix

Proof of lemma 2.2. Expanding the determinant �N−W of the matrix given in (2.5) by the
elements of the first row, we obtain

�N−W = �N−W−1 − (−1)W (−q)

8
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×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−p 1 0 · · · | −q 0 · · · · · · · · · · · · 0

0
. . .

. . . 0 | . . .
...

...
. . . 1 | . . .

...

0 · · · 0 −p | −q 0 · · · 0
−− −− −− −− −− −− −− −− −− −− −− −−

0 · · · · · · 0 | 1 0 · · · 0 −q 0
...

| −p 1
. . .

. . . 0
...

... | 0 −p
. . .

. . . −q

...
... | . . .

. . .
. . . 0

...
... | ...

. . .
. . .

. . .
...

| . . .
. . . 0

0 · · · · · · 0 | 0 · · · 0 −p 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(A.1)

Applying lemma 2.1, we obtain

�N−W = �N−W−1 + (−1)W (−q)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−p 1 0 · · · 0

0
. . .

...

...
. . .

. . .
. . . 0

... 1
0 · · · · · · 0 −p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 −q 0 · · · 0

−p 1 0
. . . −q

. . .
...

0 −p 1
. . .

. . . 0
. . . −q

...
. . .

. . .
. . . 0

...
. . .

...

... −p 1 0
0 · · · · · · · · · 0 −p 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(A.2)

and formula (2.8) immediately follows. �

Proof of lemma 2.3. (by induction)
Using lemma 2.2, it is clear that for N − W = 1,�1 = 1.
Assume that lemma 2.3 is valid for N − W − 1, N − W − 2, . . . , N − 2W − 1 for every

N − W � 2. We will show that this implies its validity for N − W . From formula (2.8) we
have

�N−W =
�(N−W−2)/(W+1)�∑

i=0

(−1)i
(

N − W − iW − 2
i

)
(qpW)i

− qpW

�(N−2W−2)/(W+1)�∑
i=0

(−1)i
(

N − 2W − iW − 2
i

)
(qpW)i

9
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=
�(N−W−2)/(W+1)�∑

i=0

(−1)i
(

N − W − iW − 2
i

)
(qpW)i

+
�(N−W−1)/(W+1)−1�∑

i=0

(−1)i+1

(
N − 2W − iW − 2

i

)
(qpW)i+1

= 1 +
�(N−W−2)/(W+1)�∑

i=1

(−1)i
(

N − W − iW − 2
i

)
(qpW)i

+
�(N−W−1)/(W+1)�∑

i=1

(−1)i
(

N − W − iW − 2
i − 1

)
(qpW)i, (A.3)

and formula (2.10) immediately follows if the integer parts of (N −W −1)/(W + 1) and (N −
W − 2)/(W + 1) are equal, using the fact

(N − (i + 1)W − 2
i

)
+

(N − (i + 1)W − 2
i − 1

) = (N − (i + 1)W − 1
i

)
.

Note that there is one, last term in the last sum in (A.3), not matched, if the former integer
is strictly smaller than the latter one, i.e.

�(N − W − 2)/(W + 1)� < �(N − W − 1)/(W + 1)� or

�(N − W − 1)/(W + 1) − 1/(W + 1)� < �(N − W − 1)/(W + 1)�.
This happens only when N −W − 1 is a multiple of W + 1, say N −W = k(W + 1) + 1. Then
the last value of index i in the last sum in (A.3) is equal to k. Hence, the coefficient of (qpW)k

is (−1)k
(k(W + 1) − 1 − kW

k − 1

) = (−1)k
(k − 1
k − 1

) = (−1)k , and the not-matched term of the last sum
in (A.3) coincides with the last term of (2.10). Consequently formula (2.10) holds true. �
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